
Enabling Sophisticated Analyses of x86 Binaries with RevGen

Vitaly Chipounov and George Candea
School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract
Current state-of-the-art static analysis tools for binary

software operate on ad-hoc intermediate representations

(IR) of the machine code. Therefore, even though IRs fa-

cilitate program analysis by abstracting away the source

language, it is hard to reuse existing implementations of

analysis tools in new endeavors. Recently, a new com-

piler framework — LLVM— has emerged, together with

many analysis tools that use its IR. However, these tools

rely on a compiler to generate the IR from source code.

We propose RevGen, a tool that automatically con-

verts existing binary programs to the standard LLVM IR,

making an increasingly large number of static and dy-

namic analysis frameworks, as well as run-time instru-

mentation tools, applicable to legacy software. We show

the potential of RevGen by converting several programs

and device drivers to LLVM and checking the resulting

code with off-the-shelf analysis tools.

1 Introduction

There exist many powerful tools for various types of code

analysis. For example, BitBlaze [25] combines dynamic

and static analysis components to extract information

from malware. CodeSurfer [2] can perform program slic-

ing, to allow understanding code behavior. Calysto [1] is

a static bug finder and bddbddb [19] provides a frame-

work for querying programs for buggy code patterns.

Unfortunately, most of these tools require source

code. Coverity [6], bddbddb, Saturn [14], and vari-

ous abstract-based representation methods [7] require C

code. Other tools like Java PathFinder [23] or Core-

Det [5] rely on a Java and LLVM compilers to transform

the source code to their analysis format.

The reliance on source code leaves a significant por-

tion of legacy and proprietary software unanalyzed. Even

when the source is partially available, parsing it can be

challenging [6] and the presence of binary libraries or

even inline assembly can severely degrade the perfor-

mance of both static and dynamic analysis tools. Bug

finding and debugging tools like KLEE [9] and ESD [29]

cannot work on such programs.

There also exist tools that directly analyze machine

code, but they often use ad-hoc intermediate represen-

tations (IR), making it hard to extend them to other ar-

chitectures and preventing easy reuse of analysis com-

ponents. An IR abstracts the source language (e.g.,

C or assembly) to facilitate analysis. For example,

CodeSurfer is based on the IR generated by the propri-

etary IDAPro [16] disassembler, while Jakstab [17] relies

on the frontend of the Boomerang [8] decompiler, and

Vine, the static analysis component of BitBlaze, uses yet

another representation.

In recent years, LLVM gained a large popularity, be-

coming a platform of choice for developing new source-

based analysis tools, and arguably imposing its IR as a

de facto standard for such tools. Currently, more than

160 LLVM-based projects are developed [20], with nu-

merous static analysis tools targeted at software verifica-

tion [24, 12, 3, 28, 24], as well as instrumentation tools

enforcing safety properties at run-time, like determinis-

tic execution [5], dynamic bug finders [18, 1], or safe

execution of error recovery code [15]. LLVM is now ac-

tively supported by Apple and forms the basis of several

commercial applications, e.g., MacOS and Xcode.

Several powerful analysis frameworks have been built

with LLVM. KLEE looks for bugs in programs using

symbolic execution, a method for thorough path explo-

ration. KLEE found deep bugs in Coreutils that were

overlooked for a decade. Parfait [12] is an LLVM-

based static analysis framework that scales to millions

of lines of code using demand-driven analysis. Finally,

LLBMC [24] is a tool that applies bounded model check-

ing to LLVM programs.

In this paper, we present RevGen, a tool that enables

the reuse of LLVM-based analysis frameworks on legacy

binary software. RevGen uses static binary translation

to convert binary code to the widely-used LLVM IR,

without relying on the source code. The output of the

tool is an LLVM program that can be analyzed, instru-

mented, and executed by standard, off-the-shelf, LLVM-

based analysis frameworks.

In the rest of the paper, we show examples of use cases

that RevGen enables (§2), the challenges RevGen faces

(§3), present the design and implementation (§4), expose

preliminary results (§5), discuss (§6), and conclude (§7).

Appears in Proc. 7th Workshop on Hot Topics in System Dependability (HotDep), Hong Kong, China, June 2011 1



2 Use Cases

In this section, we illustrate how RevGen can be used

in practice with existing analysis tools that are based on

LLVM and that implicitly rely on the availability of the

source code. We show the use cases of deterministic pro-

gram execution, bug finding in kernel-mode binaries us-

ing static analysis, reverse engineering of device drivers

for safety and portability, inline assembly removal, and

analysis of embedded software.

Debugging multi-threaded programs Multi-threaded

programs are particularly prone to bugs. Threads share

data and use synchronization mechanisms, which can

potentially lead to data races and deadlocks. The diffi-

culty of debugging these problems is compounded by the

presence of synchronizations implemented in an ad-hoc

way [27]. Tools like CoreDet [5] and SyncFinder [27]

make debugging of concurrency bugs easier. However,

they only run on LLVM code.

RevGen allows SyncFinder to annotate blocks of bi-

nary code that use ad-hoc synchronization. SyncFinder

locates the loops in the LLVM code, analyzes exit condi-

tions, determines which blocks of code can run concur-

rently, and whether the exit condition can be affected by

concurrent writes. If it is the case, SyncFinder reports an

ad-hoc synchronization.

Likewise, RevGen enables the use of CoreDet on bi-

nary programs. CoreDet is a compiler and runtime envi-

ronment that instruments multi-threaded programs in or-

der to make them behave deterministically. CoreDet en-

sures that all conflicting concurrent stores are performed

in a specific sequence and that threads are created and

scheduled in a fixed order, while introducing as little se-

rialization as possible.

Analyzing kernel-mode code Proprietary binary

drivers are a major source of system crashes and unrelia-

bility. On Linux, error rate in drivers is 3-7 times higher

than in the rest of the kernel [11]. Windows drivers are

no better, causing 85% of crashes [22]. Since drivers

usually run in kernel mode at the highest privilege level,

exploiting their bugs can lead to complete denial of

service and full system compromise.

By converting binary drivers to LLVM, RevGen would

enable the use of static analysis tools on such drivers.

LLBMC [24] is a static analysis tool that checks prop-

erties like integer overflows, illegal memory accesses,

buffer overflows, or invalid bit shifts. Its abilities make it

one of the first choices to verify device drivers.

RevGen also enables static analysis of low-level OS

code. Such code typically uses machine instructions that

have no equivalent in programs written in high-level lan-

guages. The challenge is to accurately emulate these

instructions using the LLVM IR in order to make them

amenable to static analysis.

Reverse engineering safe drivers Static analysis tools

are useful to check the quality of drivers but they cannot

fix buggy drivers by themselves. Moreover, such tools

are of little help to users who are often forced to load

faulty drivers because there is no better choice. Even if

run-time driver bug containment tools exist [26], they in-

cur overhead and are limited to a few OSes. Ideally, there

should be a tool that automatically fixes buggy drivers.

RevNIC [10] uses reverse engineering to synthesize

safer drivers from buggy ones. RevNIC takes a binary

driver and traces its execution to observe all the ways in

which the driver interacts with the hardware. The traces

contain LLVM instructions complemented with dynamic

I/O, memory, and register data, that RevNIC uses to en-

code the hardware-interaction state machine.

RevGen can be used to improve the synthesized

drivers. RevNIC has low code coverage on complex de-

vice drivers, resulting in incomplete LLVM code and re-

duced driver functionality, which forces users to manu-

ally write the missing code. Even though RevGen can-

not recover trace data, it can automatically transform the

missing code to LLVM, minimizing manual intervention.

Helping source-based tools LLVM supports native in-

line assembly, whose presence prevents most of the state-

of-the-art analysis tools from running properly. To ana-

lyze such functions accurately, analysis tools must pre-

cisely model the semantics of each machine instruction

(i.e., what the instruction does). Failing to do so may

cause both false negatives and false positives. For ex-

ample, KLEE [9] aborts execution paths that have inline

assembly and static analysis tools either ignore or make

unsound assumptions about such code [6].

Inline assembly is common in large applications. For

instance, network applications use byte-order conversion

routines (e.g., htons) implemented with specific ma-

chine instructions, while multimedia libraries use inline

assembly to efficiently implement various algorithms.

While such code can be tedious to transform to C by

hand, RevGen can do it automatically. RevGen scans

the LLVM code, extracts inline assembly, identifies in-

put/output parameters, wraps the assembly into separate

LLVM functions, and uses llvm-gcc to turn these func-

tions into binary code. Finally, RevGen translates the

obtained binary code back to pure LLVM, which it uses

as a drop-in replacement of the inline assembly.

Analyzing embedded software While x86 is a com-

mon architecture on desktop PCs and servers, there are

many more architectures in the embedded world. For

instance, smartphones use MIPS and ARM processors.

RevGen can automatically convert instruction sets of

these platforms to LLVM. This immediately allows the

reuse of LLVM-based tools on embedded proprietary

software. We shall see in the next section how RevGen’s

design enables the support of different architectures.

2



3 Challenges

Enabling static analysis of machine code poses two main

challenges for static translators like RevGen: extracting

binary code’s semantics and inferring type information.

First, translators must extract the semantics of the ma-

chine instructions. For this, they decompose each com-

plex instruction in a sequence of simpler operations (the

intermediate representation). However, virtually all tools

ignore the system instructions that manipulate the con-

trol state (e.g., switching execution modes, loading seg-

ment registers on x86, etc.). Therefore, such tools cannot

analyze OS kernel code accurately. Finding bugs such as

privilege escalation through virtual 8086 mode (affecting

all Windows versions from NT 3.1 to Windows 7 [21]) is

out of reach for them. RevGen addresses this challenge.

Second, translators must infer type information to en-

able accurate analysis. The LLVM IR is designed to re-

tain most of the type information present in the source

code. However, binaries only manipulate integers and

memory addresses. The absence of type information de-

grades the quality of some analyses, in particular alias

analysis. Analyses that rely on precise alias information

have their rate of false positives and negatives increased.

The challenge for RevGen is to rebuild the type in-

formation and other LLVM constructs as if the result-

ing LLVM code was obtained by compiling source code.

This places RevGen in between disassemblers and de-

compilers. While disassemblers stop after generating the

IR, decompilers turn the IR into human-readable high-

level code, after reconstructing type information, vari-

ables, control flow, etc. RevGen does not need to recon-

struct high-level control flow.

4 RevGen Prototype

RevGen takes as input an x86 binary and outputs an

equivalent LLVM module in three steps. The general

architecture is shown in Figure 1. First, RevGen looks

for all executable blocks of code and converts them to

LLVM translation blocks (§4.2). Second, when there are

no more translation blocks (TB) to cover, RevGen trans-

forms them into basic blocks and rebuilds the control

flow graph (CFG) of the original binary in LLVM format

(§4.3). Third, RevGen resolves external function calls to

build the final LLVM module. For dynamic analysis, a

last step links the LLVM module with a run-time library

that allows the execution of the LLVM module (§4.4).

4.1 Background

LLVM is a compiler framework that uses a compact

RISC-like instruction set with an unlimited number of

registers. LLVM has about 30 opcodes, only two of

which can access memory (load and store), all other

instructions operate on virtual registers.

LLVM uses the static single assignment (SSA) code

representation. In SSA, each register can be assigned

only once. Hence, SSA also provides a phi instruction

that assigns values to variables depending on the direc-

tion of the control flow. This instruction allows to modify

the same variable in two different branches.

This makes LLVM programs amenable to complex

analyses and transformations. LLVM code explicitly em-

beds the program’s data flow and def-use graphs. This

enables transformations like function inlining, constant

propagation, or dead store removal, which are a key part

of static and dynamic analysis tools.

A static translator must take into account LLVM speci-

ficities. It must account for pointer arithmetic, accommo-

date different stack layouts, transform accesses to vari-

ous code and data segments, deal with indirect calls, and

provide runtime support to be able to execute the gener-

ated LLVM programs. Finally, the translated code must

be semantically-equivalent to the original binary.

4.2 Translating Blocks of Binary Code

The static translator takes as input the binary file and a

program counter and transforms all the machine instruc-

tions to LLVM until it encounters a terminator. A termi-

nator is an instruction that modifies the control flow (e.g.,

branch, call, return). The translation has two steps: the

input is first disassembled into micro-operations, which

are then converted to LLVM instructions.

First, the translator converts machine instructions into

an equivalent sequence of micro-operations. For exam-

ple, the x86 instruction inc [eax] that increments the

memory location pointed to by the eax register is split

into a load to a temporary register, an increment of that

register, and a memory store. The sequence of micro-

operations forms a translation block.

Second, the translator maps each micro-operation to

LLVM instructions, using a code dictionary. The dic-

tionary associates each micro-operation with a sequence

of LLVM instructions that implement the operation.

Most conversions are a one-to-one mapping between the

micro-operations and the LLVM instructions (e.g., arith-

metic, shift, load/store operations).

The translator also takes into account instructions that

manipulate the system state. Current tools do not model

such instructions to a sufficient precision level. For ex-

ample, RevGen accurately translates to LLVM instruc-

tions like fsave or mov cr0, eax. The former saves

the state of the floating point unit, while the latter sets the

control register (e.g., to enable 32-bit protected mode,

which changes the behavior of many instructions).

For this, the translator uses emulation helpers. An em-

ulation helper is a piece of C code that emulates com-

plex machine instructions that do not have equivalent

micro-operations. RevGen compiles emulation helpers

to LLVM and adds them to the code dictionary, transpar-

ently enabling the support of machine instructions that

manipulate system state.

3



Binary
Program

Micro-
Operations

LLVM Code Dictionary

Entry 
points Translation Block

in LLVM format
Discovered

Addresses

Translation 
Blocks

Basic
Blocks

Splitting Raw LLVM
Functions

CFG
rebuilding LLVM

Program

Code
cleaning

Optional Runtime Library

Linking

Disassembly

LLVM Code Dictionary

Static Translator

LLVM
Functions

Library call
recovery

Figure 1: The RevGen Workflow

Third, the translator packages the sequence of LLVM

instructions into an LLVM function that is equivalent to

the original binary code. More precisely, given the same

register and memory input, the translated code produces

the same output as what the original binary does if exe-

cuted on a real processor.

The translator stops when all translation blocks have

been extracted. This happens when the translator cannot

find new code to disassemble (e.g., by looking at not-yet

explored jump and call target addresses).

4.3 Reconstructing the Control Flow Graph (CFG)

The CFG builder converts the translation blocks to ba-

sic blocks and groups the basic blocks into LLVM func-

tions. The resulting functions are equivalent to those im-

plemented by the original binary program.

RevGen generates basic blocks by splitting translation

blocks whenever necessary. A basic block is a sequence

of instructions that has only one entry and one exit point.

Unlike translation blocks, no code can jump to the mid-

dle of a basic block. When this happens, RevGen splits

the block at the target instruction, yielding two different

LLVM functions. This happens iteratively until no more

splitting is possible (i.e., only basic blocks remain).

Next, RevGen identifies the function entry points.

RevGen considers basic blocks that are targets of call

instructions or that have no incoming edges to be func-

tion entry points. We found this heuristic to work well

on a variety of binaries produced by standard compilers.

RevGen builds the CFG of each function by connect-

ing basic blocks together. Two basic blocks are con-

nected if they follow each other or if the second basic

block is the target of a jump in the first one.

Finally, RevGen transforms the CFG into an LLVM

function. RevGen represents each basic block b of the

original binary by an LLVM function fb. RevGen first

inserts an LLVM call instruction to the next basic block

at the end of each fb. Then, RevGen applies an LLVM

function inlining pass to merge all the call targets into

one large LLVM function.

4.4 Obtaining Analyzable LLVM Programs

The output of the CFG builder is a raw LLVM function

that cannot be used by static or dynamic analyzers as

is (e.g., it lacks explicit library calls and contains un-

resolved pointer arithmetic). We describe next how to

transform the CFG builder output into analyzable code.

RevGen makes several assumptions about the original

binary to synthesize analyzable LLVM code. RevGen re-

quires the binary to provide a symbol table to identify li-

brary calls and a relocation table to identify all constants

used as pointers. Moreover, the binary must not have

self-modifying code. Finally, both the source and target

architectures must have the same pointer size, in order to

be able to run the translated code.

4.4.1 Enabling Static Analysis

First, RevGen identifies external function calls by scan-

ning the import table of the program binary. An import

table maps a list of function and library names to ad-

dresses. The OS loader patches the table with the actual

function adresses so that indirect calls that reference the

table can work properly.

Second, RevGen patches the raw LLVM functions

with explicit external calls. Basic blocks originally en-

code external calls by an indirect jump to an address

read from the import table. RevGen replaces such jumps

by LLVM call instructions using the actual function

names, allowing the LLVM linker to later resolve the call

targets. This step is required because static analysis tools

look for the use of specific functions. For example, mem-

ory checkers would track the calls to malloc and free.

Third, RevGen encodes the content of the program’s

segments as LLVM arrays and embeds them in the

LLVM program. This preserves the assumptions about

the data layout in the original binary and account for pro-

grams that refer to segments with pointer arithmetic.

RevGen does not need to resolve indirect control flow

(ICF). RevGen is not a static analysis tool, it only trans-

lates ICF from x86 to LLVM. Static resolution of ICF is

left to the analysis tools. Such tools can resolve ICF to

any precision they need and provide any soundness and

completeness guarantees they wish.

4



4.4.2 Enabling Dynamic Analysis

Dynamic tools perform analysis at run-time, which re-

quires to execute the program. For this, besides apply-

ing the steps described in §4.4.1, RevGen links a specific

runtime library that resolves indirect function calls, deals

with memory layouts, and handles multi-threading. This

library does not affect run-time analysis tools, because

they have full access to the library’s bitcode (i.e., the bi-

nary representation of the LLVM IR). They see the run-

time as another component of the analyzed program.

Resolving pointer arithmetic RevGen uses relocation

tables to identify all pointers in the binary and adapt

them to the LLVM memory model. Such tables list

all code and data locations that the OS loader patches

if it loads the binary at a different base address than

what the compiler assumed. RevGen uses these tables

to translate all hard-coded pointers to LLVM pointers,

adapted to the memory layout seen by LLVM. In particu-

lar, RevGen remaps pointers that reference data segments

to the corresponding LLVM arrays. Without relocation

tables, RevGen resorts to monitoring memory accesses

and patching them at run-time.

Resolving indirect calls and branches The code gen-

erator embeds a table that maps basic blocks’ native ad-

dresses to the corresponding LLVM basic blocks. It also

stores which function the basic blocks belong to, as well

as whether the basic block is the entry point of a function.

Whenever the translated code performs an indirect call

or jump to a native address, the runtime looks for the

corresponding LLVM basic block. If the block is not

found or if there is a type mismatch (e.g., calling a block

that is not a function entry point), the runtime aborts the

program and notifies the user.

Adapting stack pointers The translated code retains

all the assumptions of the original binary about the stack

layout. In particular, it assumes that local variables,

return addresses, and parameters are located at precise

memory adresses when doing stack pointer arithmetic.

The runtime library preserves the original stack layout

by using a dual-stack architecture. There is one native
stack used by the LLVM program and one implicit stack,

whose pointer is passed as a parameter to each LLVM

function, and which is manipulated by the LLVM func-

tions. The runtime allocates the implicit stack and sets

the implicit stack pointer before calling the main entry

point of the program. It also copies the arguments to the

native stack when calling library functions.

Supporting multi-threading Multi-threading consists

in allocating an implicit stack for each thread. For this,

the runtime library intercepts thread allocation routines

and wraps the thread entry points into a special function

that sets up the implicit stack. The stack is automatically

freed when the thread routine finishes.

Self-modifying code RevGen does not support self-

modifying code. This does not hurt RevGen because

such code is practically restricted to JITed languages

(e.g., C#, Java). In these cases, existing tools run on the

bytecode of the respective languages, not on the final ma-

chine code itself. A side effect of this lack of support is

that native code injected at run-time cannot be executed,

increasing the safety of translated programs, similar to

what other LLVM-based tools aim at achieving [13].

5 Preliminary Results

In this section, we aim to answer two key questions:

Does RevGen enable the reuse of existing LLVM-based

analysis tools on x86 binaries? What completeness can

RevGen achieve on typical binaries?

We evaluate a prototype of RevGen that is based on

the QEMU’s [4] binary translator. QEMU is a system

emulator that runs unmodified OSes on top of arbitrary

hosts by dynamically translating the guest instructions

to the host’s instruction set. We extended the dynamic

translator to generate LLVM bitcode in prior work [18,

10]. In this work, we separate the dynamic translator

from QEMU and make it static.

To answer the first question, we convert an x86 micro-

benchmark to LLVM using RevGen and run the result in

CoreDet [5] . The micro-benchmark has several threads

that access unprotected shared variables, whose value is

printed at the end of each run. Without CoreDet, the

printed output differs from run to run. With CoreDet, the

output stays the same. This shows that RevGen enabled

the reuse of CoreDet to render binary programs behave

deterministically in the presence of race conditions.

Initial results suggest that RevGen’s completeness is

comparable to state-of-the-art disassemblers on kernel-

mode binaries. We disassembled the pcntpci5.sys

Windows network device driver with RevGen and com-

pared the results to IDA Pro. IDA Pro identified 78 func-

tions, while RevGen found 77. RevGen failed to find 4

functions and misinterpreted 3 basic blocks as function

starts, because of incomplete detection of jump tables.

6 Discussion

In this section, we discuss three aspects that we be-

lieve will enable RevGen to become a major enabler for

widespread static analysis of binary programs.

RevGen can effortlessly leverage existing disassem-

blers, should better completeness be required. RevGen’s

translator only requires a list of program counters and an

accurate list of function entry points in order to convert

the binary to LLVM. Both can be directly obtained from

disassemblers like IDAPro or state-of-the-art static ana-

lyzers such as Jakstab.

Extending RevGen to support other architectures than

x86 is simple and requires limited efforts. The LLVM

backend that translates micro-operations to LLVM need

5



not be modified. The only need is to modify the frontend

(e.g., the ARM or MIPS frontend) with annotations spec-

ifying the types of basic blocks (e.g., branch, call, return,

etc.) to allow the CFG builder to merge the basic blocks

and reconstruct the functions.

We argue that RevGen enables analysis tools to check

binary programs as well as their interaction with the pro-

cessor. Analysis tools typically check programs that in-

teract with libraries. In the context of RevGen, the pro-

gram is the machine code translated to LLVM and the li-

brary is the collection of emulation helpers in LLVM for-

mat. For example, checking that the invocation of a soft-

ware interrupt does not cause a general protection fault is

reduced to verifying that the library does not invoke the

corresponding program’s entry point.

This can potentially open up all sorts of analyses on

low level system code. We envision RevGen to enable

analysis tools to answer questions like: Can the user-

mode code issue a system call in such a way that would

cause arbitrary code execution? Are there any bugs in the

emulation helpers (and thus in QEMU) that would cause

the application to malfunction? Since RevGen produces

plain LLVM bitcode, we expect existing tools to answer

such questions out of the box.

7 Conclusion

We presented RevGen, a tool that automatically converts

existing binary programs to the LLVM intermediate rep-

resentation. RevGen can potentially enable a large num-

ber of static and dynamic analysis frameworks, as well

as run-time instrumentation tools to work on legacy soft-

ware. Preliminary results show that RevGen can success-

fully translate large Windows drivers and run existing

dynamic analysis tools on binary programs. We plan to

make the RevGen prototype freely available.

References

[1] D. Babic and A. J. Hu. Calysto: scalable and precise extended

static checking. 2008.

[2] G. Balakrishnan, T. Reps, N. Kidd, A. Lal, J. Lim, D. Melski,

R. Gruian, S. Yong, C.-H. Chen, and T. Teitelbaum. Model check-

ing x86 executables with CodeSurfer/x86 and WPDS++. Techni-

cal report, 2005.

[3] B. Bartels and S. Glesner. Formal modeling and verification of

low-level software programs. In Intl. Conf. on Quality Software,

2010.

[4] F. Bellard. QEMU, a fast and portable dynamic translator. In

USENIX Annual Technical Conf., 2005.

[5] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman.

CoreDet: a compiler and runtime system for deterministic mul-

tithreaded execution. In Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, 2010.

[6] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,

C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A few

billion lines of code later: using static analysis to find bugs in the

real world. Communications of the ACM, 53(2), 2010.

[7] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,

A. Miné, D. Monniaux, and X. Rival. A static analyzer for large

safety-critical software. In Conf. on Programming Language De-
sign and Implem., 2003.

[8] Boomerang decompiler. http://boomerang.sourceforge.net/.

[9] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and

automatic generation of high-coverage tests for complex systems

programs. In Symp. on Operating Sys. Design and Implem., 2008.

[10] V. Chipounov and G. Candea. Reverse engineering of binary de-

vice drivers with RevNIC. In ACM EuroSys European Conf. on
Computer Systems, 2010.

[11] A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Engler. An

empirical study of operating systems errors. 2001.

[12] C. Cifuentes and B. Scholz. Parfait — designing a scalable bug

checker. In Static Analysis Workshop, 2008.

[13] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Secure virtual

architecture: a safe execution environment for commodity oper-

ating systems. In Symp. on Operating Systems Principles, 2007.

[14] I. Dillig, T. Dillig, and A. Aiken. Sound, complete and scalable

path-sensitive analysis. In Conf. on Programming Language De-
sign and Implem., 2008.

[15] C. Giuffrida, L. Cavallaro, and A. S. Tanenbaum. We crashed,

now what? In Workshop on Hot Topics in Dependable Systems,

2010.

[16] Hex-Rays. IDA Pro Disassembler. http://www.hex-rays.com.

[17] J. Kinder and H. Veith. Precise static analysis of untrusted driver

binaries. In 10th Intl. Conf. on Formal Methods in Computer-
Aided Design, 2010.

[18] V. Kuznetsov, V. Chipounov, and G. Candea. Testing closed-

source binary device drivers with DDT. In USENIX Annual Tech-
nical Conf., 2010.

[19] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots,

M. Carbin, and C. Unkel. Context-sensitive program analysis as

database queries. In Symp. on Principles of Database Systems,

2005.

[20] C. Lattner. LLVM related publications. Official LLVM web site.

Retrieved on 2010-12-04. http://llvm.org.

[21] MITRE. CVE-2010-0232: Microsoft Windows NT #GP

trap handler allows users to switch kernel stack, 2010.

http://cve.mitre.org.

[22] V. Orgovan and M. Tricker. An introduction to driver quality.

Microsoft Windows Hardware Engineering Conf., 2003.

[23] C. Păsăreanu, P. Mehlitz, D. Bushnell, K. Gundy-Burlet,

M. Lowry, S. Person, and M. Pape. Combining unit-level sym-

bolic execution and system-level concrete execution for testing

NASA software. In Intl. Symp. on Software Testing and Analysis,

2008.

[24] C. Sinz, S. Falke, and F. Merz. A precise memory model for low-

level bounded model checking. In 5th Intl. Workshop on Systems
Software Verification, 2010.

[25] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,

Z. Liang, J. Newsome, P. Poosankam, and P. Saxena. Bitblaze:

A new approach to computer security via binary analysis. In Intl.
Conf. on Information Systems Security, 2008.

[26] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the

reliability of commodity operating systems. ACM Transactions
on Computer Systems, 23(1), 2005.

[27] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad-hoc syn-

chronization considered harmful. In Symp. on Operating Sys. De-
sign and Implem., 2010.

[28] A. Zaks and R. Joshi. Verifying multi-threaded C programs with

SPIN. In Intl. SPIN Workshop, 2008.

[29] C. Zamfir and G. Candea. Execution synthesis: A technique for

automated debugging. In ACM EuroSys European Conf. on Com-
puter Systems, 2010.

6


